
Analysis of Embedded Malware through Reverse Engineering

Vaibhav Gupta

Northern India Engineering College, F-26, Shastri Park

Guru Gobind Singh Indraprastha University

New Delhi, India

vaibhav12jan@gmail.com

Ashish Saxena/Rahat Sethi

AKS IT Services Pvt. Ltd., E-52, Sector-3, Noida

Utter Pradesh, India

ashish@aksitservices.co.in

rahat.sethi@aksitservices.co.in

Abstract— Antivirus Scanners are not able to detect about

eighty percent [1] of malwares and thus cannot be relied upon.

In this research paper we have presented a unified approach of

analyzing embedded malwares in application data files like MS

Word, MS Excel, Acrobat PDFs etc. After having analyzed

about 103 malware, we found some typical characteristics used

by malware to enhance their functionality and severity of
attack and also avoid their detection from antivirus.

Keywords- Malware analysis; Reverse engineering; Embedded
malware analysis; Code analysis

I. INTRODUCTION

A malware is any executable content with unknown
functionality specially designed to perform malicious
activities without the owner‟s prior consent. Malware
categories include: Viruses, Worms, Intrusion Tools,
Rootkits and Spyware. Earlier malwares were only
associated with executable files, but now these are found in
popular application data files like MS-Word, MS-
PowerPoint, MS-Excel, Acrobat PDFs, etc. These
application data files are accessible to a major section of
computer users rendering them vulnerable to malware
infection.

A recent attack targeting the publicity of FIFA 2010
World Cup was in wild in which an infected PDF was
circulated though spam emails. After opening the PDF, the
malware tries to steal sensitive information, causes damage
to the machine, monitor victim‟s activity, etc. We have
analyzed about 103 different malware of different categories
and functionalities and have concluded a unified approach
for analyzing malwares through reverse engineering. In this
research paper we will try and present a unified approach of
analyzing malwares that are embedded in the application
data files.

II. NEED FOR REVERSE ENGINEERING

Reverse Engineering is the art of analyzing a system,

software or an object to its minutest detail to understand its

functionality/operation principles. A Malware is reverse

engineered to understand the working of a malware and the

functionality and capability of the malware. The following

are the main reasons to conduct reverse engineering of a

malware:

 -- Assess damage

 -- Analyze malware functionality

 -- Identify vulnerability

 -- Catch the intruder

 -- Prepare signatures

The main aim of reverse engineering malware apart from

aforementioned is to understand the attacker‟s methodology

and skill set. This helps in deeply analyzing the attacker and
thus mitigating future attacks on the network along with

planning the removal of malware from the network.

III. REVERSE ENGINEERING OF EMBEDDED MALWARE:
A UNIFIED APPROACH

Embedded malware refers to the ability to hide malicious

code inside a file and thus in most cases allowing it to pass
through undetected by commercial antivirus. In this paper,

we have presented a unified procedure that can be used to

reverse engineer majority of the malwares, for required

understanding & analysis of them which further aids in

protecting/cleaning your network. Our approach will be

broadly divided into the following major steps:

 -- Extract the executable content

 -- Check for Packers/Protectors/Cryptors

 -- Unpack the executable content

 -- Load into debugger & start the analysis

A. Environment for Carrying out Analysis

A malware when analyzed is required to be executed and

reverse engineered. Upon execution the malware might alter

system files or even make certain changes in the system.

Hence it is extremely important to set up a sanitized

environment for analyzing and reverse engineering the

malware. A “Sanitized Lab” can be created to perform the

analysis. The prerequisites of the lab are:

-- Two machines, one for execution of infected file & the

other for analyzing any network traffic being sent upon

execution. Both machines are required to be placed in

an isolated network.

 -- Two machines are required to be loaded with
fresh operating systems, to make it easier to understand any

new instance of running processes or changes made on the

machine upon execution of malware.

 -- Necessary tools for carrying out the

examination.

B. Virtualization of Environment for Carrying out Analysis

In most scenarios, one can make use of Virtual Machines for

carrying out analysis, thereby avoiding the requirement for
an isolated infrastructure. But virtualization may be

sometimes detected by malwares and they can change their

behavior accordingly, hence an isolated infrastructure is

advised.

Once the environment has been created the infected file is

loaded on the system and analysis can now begin.

IV. PROCEDURE FOR CARRYING OUT REVERSE

ENGINEERING OF EMBEDDED MALWARE

As mentioned earlier in the paper, the approach for carrying

out reverse engineering would broadly be divided into four

states. They are described as under:

A. Extract the Executable Content

The first step in analyzing an embedded document is to

segregate the document from the portable file attached to it.
Hence it is important to extract the executable content of the

data file. In order to do so, the user should understand the

files that are being created upon execution. This can be

achieved with the aid of several tools that take system

snapshots of file structure before and after the infection and

will compare and produce the result containing the new files

that were created. After you get the new files, you would be

required to analyze each and every Portable Executable

(herein referred as PE) file that is created upon execution of

the original document/pdf. Some of the common extensions

are: .exe, .dll, .drv, .sys, .ocx, .scr, .cpl.

B. Check for Packers/Protectors/Cryptors

About 79% of malwares are obfuscated with

Packers/Protectors/Cryptors [2]. This technique is used by

the malware to evade signature based detection techniques

and also make it difficult for reverse engineers to reverse the

file. Each packed executable is equipped with a loader stub
which is responsible for restoring the packed executable into

its original state at run time in memory. Most popular

packers include UPX, Armadillo, aSPack, ASProtect. The

tool we can use to check the packer being used is PEID [3].

When an executable is loaded in PEID, it displays the name

of the packer that is used by the executable. Since

unpacking process is different for every packer, PEID

reveals useful information to initiate unpacking.

C. Unpack the Executable Content

A packed PE cannot be reverse engineered; hence the PE

would be first requiring unpacking. In this paper we would

be discussing a generic approach; detailed approach for

unpacking would not be taken up in this paper. In general,

the packer‟s loader stub unpacks the executable in memory

and the Instruction Pointer (herein referred as IP), during the

execution of the packed executable so that it points to the

Original Entry Point (herein referred as OEP) to initiate the

normal execution of the PE file.

The above inference is derived from the fact that sooner

than later the packer is required to jump to OEP to transfer

control to the normal executable. The OEP is required by

the program to be called to transfer the execution and thus

(generally) stored at run-time in Extended Stack Pointer

(herein referred as ESP) register. We can load our

executable in a debugger and trace the first change in the

value of ESP register to find the OEP of the executable.

After we have found the OEP, we can replace the EP with it

in the „PE headers‟ section. We can also use some
automated tools for unpacking like: Quick Unpack,

rl!depacker , GUnPacker.

D. Unpack the Executable Content

A debugger or debugging tool is a computer program that

is used to test and debug other programs (the "target"
program). Typically, debuggers offer more sophisticated
functions such as running a program step by step (single-
stepping or program animation), stopping (breaking)
(pausing the program to examine the current state) at some
event or specified instruction by means of a breakpoint, and
tracking the values of some variables[4]. An unpacked (PE)
executable (dll, exe, drv, sys, cpl, scr or ocx) is loaded into
debugger for analysis.

After the PE is loaded into debugger, the executable is

dissembled into basic assembly level instructions. Now we

need to analyze the PE by executing it in the controlled

environment of debugger. We will be placing breakpoint on

each and every function call that will analyze for its reaction

on the system. A breakpoint is a signal that tells the

debugger to temporarily suspend execution of your program

at a certain point. When execution is suspended at a

breakpoint, your program is said to be in break mode.

Entering break mode does not stop or end the execution of

your program; execution can be resumed at any time [5].

At first, we are required to analyze the Windows File

handling Application Programming Interface (herein

referred as API) calls to gather information about the files

being created/read/changed. If the malware is creating some
logs, like in case of keylogger, its activity can be traced

easily. Some of the popular File handling APIs are:

 File Handling API`s

- WriteFile()

- CreateFile()

- ReadFile()

- FindFileName()

- DeleteFile()

Malwares manipulate registry data to install themselves as

startup object, hide their existence, disable some utilities

like Task Manager, Registry Editor that may disable the

malware, etc. We are required to check for all the registry
manipulations that may have caused anomalies in the

system. Some of the Registry Handling APIs are:

 Registry Handling API`s

- RegCreateKey()
- RegOpenKey()

- RegDeleteKey()

- RegDeleteValue()

- RegQueryValue()

- RegSetValue()

Majority of malwares communicate with their command and

control center to receive controlling commands for the

malware and send confidential information of the victimized

machine at regular intervals. Adding breakpoints to

Windows APIs responsible for network communication will
help analyze the data being traversed through the network

due to the malware infection. Some of the Network

communication APIs are:

 Network Communication APIs

- WSAStarup()

- recv()

- send()

- InternetConnect()

- InternetOpen()

- InternetReadFile()

- InternetOpenURL()

Some advanced malware coders incorporate some special

anti-debugging tricks to avoid reverse engineering

enumerate the functionality of their malwares. These

techniques hinder in malware analysis, thus researchers are

delayed in developing the antivirus signatures of such
malwares thus increasing virus‟s life span

Some APIs, researchers need to check for anti-debugging

tricks are:

 Anti-Debugging APIs

- IsDebuggerPresent()

- CheckRemoteDebuggerPresent()

Other APIs we that can also be checked for further analysis

are as follows:

 Miscellaneous APIs

- GetProcAddr()

- GetAsynKeyState()

- CreateProcess()

- GetClipboardData()

- GetStartupInfo()

- GetSystemInfo()

- WinExec()

V. INFORMATION GATHERING & ANALYSIS

Once the entire reversing of the malware has been

conducted, it is required to gather and collate the

information on each stage. This information is then collated

and analyzed to ascertain the complete functionality of the

malware. Several inferences can also be derived, such as

files modified, connections made, traffic sent, registry

entries made etc. Once all the information has been

successfully gathered, documentation for the same should

be made. With this info, malware should be removed from
the affected machines successfully. Lastly signatures of the

malware can be added into the security devices for

identification & avoidance.

VI. CONCLUSION

This paper describes the generic approach that can be

adopted while identifying embedded malware in various

kinds of documents. The approach can be utilized for

reversing any file and understand the functioning of the

malware. This aids in sanitization of the network and also

helps in predicting next generation of malware.

REFERENCES

[1]: http://www.zdnet.com.au/eighty-percent-of-new-malware-defeats-

antivirus-139263949.htm

[2]Pedro Bustamante. Mal(ware)formation statistics

http://research.pandasecurity.com/archive/Mal_2800_ware_2900_formatio

n-statistics.aspx, 2007

[3]PIED, Generic packer Detector. http://www.peid.info/

[4] http://en.wikipedia.org/wiki/Debugger

[5]http://msdn.microsoft.com/en-us/library/4607yxb0.aspxG.

[6] “Malware analysis for fun and profit”,

http://www.windengineeringas.com/Malware_Analysis_for_Fun_and_Profi
t.pdf

http://www.peid.info/
http://en.wikipedia.org/wiki/Debugger
http://msdn.microsoft.com/en-us/library/4607yxb0.aspx

